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Collective spin excitations in a planar array of interacting submicron magnetic squared dots have been
studied by the Brillouin light-scattering technique. The dispersion curves of collective spin modes are charac-
terized by periodical oscillations determined by the width of the artificial Brillouin zone. Because of the
uniaxial symmetry introduced by the application of an external magnetic field H0, the dynamical coupling and
the frequency dispersion of collective modes are different when the wave vector is perpendicular or parallel to
H0. An analytical model has been exploited to calculate the dispersion of collective spin modes by numerically
solving eigenvalue/eigenfunction problem for a band matrix which originates from linearized Landau-Lifshitz
magnetic torque equation. A very good agreement between calculation and experiment was found. In addition,
a micromagnetic approach has been exploited to achieve an independent evaluation of the collective modes
frequency and a visualization of their spatial profile on a limited �3�3� array of dots.
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I. INTRODUCTION

Spin dynamics in ordered arrays of interacting nanomag-
nets has recently received increased attention, in view of the
emerging research field of magnonics whose aim is the real-
ization of artificial structures �called magnonic crystals�
where propagating spin waves are used to carry and process
information.1,2 In this context, plane ordered arrays of inter-
acting elements offer the opportunity to realize magnonic
crystals where it is possible to control the spin-wave propa-
gation by exploiting the pattern geometry �plane magnonic
crystals�. In arrays of periodically spaced nanomagnets, in
fact, the dipolar interaction couples resonances of individual
elements leading to the formation of collective modes in the
form of Bloch waves.3–10 As for any periodical medium, a
Bloch wave number describes the wave process and it is
unambiguously defined in the first Brillouin zone �BZ� of the
artificial crystal lattice. Furthermore, the dispersion of the
waves is characterized by the presence of allowed magnonic
states and ranges of forbidden frequencies �band gaps�.

In most of previous works cited above, the magnonic
band gaps were experimentally observed by Brillouin light
scattering �BLS� in one-dimensional �1D� arrays consisting
of longitudinally magnetized nanostripes. It was shown that
these structures support propagation of Bloch waves at any
angle between the wave vector and the long axis of the
stripes but the magnonic gaps are partial, as shown in Ref. 7:
allowed magnonic bands for collective mode propagation
along the stripes overlap with magnonic gaps for propagation
in the direction of the array periodicity.

Similar to the case of 1D structures, also two-dimensional
�2D� artificial magnonic crystals can be fabricated in the
form of ordered arrays of closely packed magnetic dots
coupled by dipolar interaction. The first attempts to prove the
effect of dynamical coupling on the spin excitations of 2D
arrays of dots were made by studying the effect of interdot
distance on the magnetic modes frequency.11–13 BLS experi-

ments carried out on squared arrays of micron-size circular
NiFe dots revealed the presence of a fourfold anisotropy,
attributed to the dynamic magnetic dipole interaction be-
tween the dots at small interelement distances. However, in
these pioneering experiments neither dispersive modes nor
bands formation were detected. Furthermore, no quantitative
description of the interplay between static and dynamic stray
fields was provided. More recently, experimental studies in
2D array of interacting nanoelements �excited by the quasi-
uniform field of a coplanar transmission line� were reported
by time-resolved Kerr microscopy14,15 and ferromagnetic
resonance16 but no experimental evidence of frequency dis-
persion and propagating character of such modes could be
given because with the two techniques above it is not pos-
sible to sweep the wave vector of measured excitations.

In this work we investigate the frequency dispersion and
the propagation characteristics of collective spin excitations
in a dense 2D array of submicrometric size square dots by
BLS. One of the important advantages of our technique is its
capability to separate the dynamic coupling of elements from
their static coupling. This is achieved by observing variation
in the BLS response for different values and directions of the
exchanged in-plane wave vector at a fixed external field. A
strong dependence of dynamical dipole coupling on the di-
rection of collective mode propagation is observed and dis-
cussed in terms of the symmetry breaking imposed by the
application of the external dc magnetic field. To achieve a
quantitative interpretation of the experimental data, a calcu-
lation of collective modes is performed by numerically solv-
ing an eigenvalue/eigenfunction problem for a band matrix
which originates from the linearized Landau-Lifshitz mag-
netic torque equation. In addition, a micromagnetic approach
is exploited to carry out an independent estimation of eigen-
frequencies of the collective modes and to visualize of their
spatial profiles on a limited �3�3� array of dots.
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II. EXPERIMENT AND MICROMAGNETIC MODELING

A large array �1�1 mm2� of L=30-nm-thick square dots,
having lateral size w=450 nm and interdot spacing �
=70 nm �period a=w+�=520 nm; first Brillouin-zone
boundary kBZ=� /a=0.6�105 rad /cm� has been fabricated
on thermally oxidized Si substrate by means of e-beam li-
thography, electron-gun deposition and lift-off process. A
Scanning electron microscopy �SEM� image of the array is
shown in Fig. 1.

Brillouin light-scattering experiments were performed in
the backscattering configuration, using the �=532 nm green
light of a single-mode diode-pumped solid-state laser and a
Sandercock-type �3+3�-pass tandem Fabry-Perot interferom-
eter. To study the dispersion of propagating collective modes,
BLS spectra were measured at different incidence angles of
light � in the range between 0° and 70°. This corresponds to
variation in the absolute value of the in-plane transferred
wave vector, k=2�2� /��sin �, in the range between 0 and
2.2�105 rad /cm.

Measurements were carried out in two different configu-
rations with the external magnetic field H0=1.5 kOe applied
in the sample plane along the y axis, i.e., along one of the
element edges: �a� magnetostatic surface waves geometry
�MSSW�, also known as Voigt geometry, where the trans-
ferred wave vector k is perpendicular to H0. �b� Magneto-
static backward volume waves �MSBVW� geometry where
the transferred wave vector k is parallel to H0.

Micromagnetic simulations have been performed by using
the OOMMF package.17 Due to the time-consuming character-
istics of such simulations, we restricted our analysis to a
finite array consisting of 3�3 squared dots. The procedure
we used to simulate the eigenmodes frequency and spatial
profile is already described in Refs. 9 and 18 and it is shortly
recalled here. The first step of the process consists in calcu-
lating the static magnetization configuration for an in-plane
applied dc field H0. The obtained magnetic ground state is
then used as the initial magnetization configuration for the
dynamical calculation. Retaining the value of the external dc
uniform field, which is constant in time, the system is excited
by an out-of-plane Gaussian pulse, with a full width at half

maximum of 1 ps and an amplitude of 10 Oe. To investigate
the efficiency of the dynamical coupling in excited magnetic
normal modes of adjacent dots,19 we apply this field pulse
only to the central dot of the 3�3 array. After the field pulse
is applied the system is left free to evolve following the
Landau-Lifshitz equation of motion with a damping factor
artificially set to a low value �=0.0001. Magnetization ring
down in each cell for every dot of the array is recorded. A
temporal Fourier analysis of these data is carried out to pro-
duce the local power spectra of the magnetization. A surface
plot of the imaginary part of the Fourier coefficients for each
eigenfrequency provides the two-dimensional profile of the
corresponding eigenmode. The magnetic parameters used in
the micromagnetic calculations are extracted from the fitting
of the surface and first perpendicular standing spin wave of
the 30-nm-thick continuous NiFe film, as shown in Fig. 2.
The parameters extracted from the best-fit procedure and
used for the calculation are the following: saturation
magnetization 4�M0=10.3 kOe, gyromagnetic constant
�=2.93 MHz /Oe and exchange constant A=1.0
�10−6 erg /cm.

III. THEORY

To calculate eigenfrequencies of collective modes we use
a Fourier-space approach. It is an extension on the 2D case
of the original method recently implemented for the
quasi-1D magnonic crystal.20 Referring to the reference
frame defined in Fig. 1, we start with the linearized Landau-
Lifschitz equation

− i	m�r� = − ��M�r� � �hex�r� + hd�r�� + H0�r� � m�r�� ,

�1�

where m�r� is the dynamic magnetization, r is the radius
vector, hex�r� and hd�r� are the dynamic exchange and dipole
fields, respectively, H0�r�=H0�r�ey is the static internal field
of the dots, and M�r� is the static magnetization. Following
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FIG. 1. SEM image of the array of squared dots. BLS spectra
were measured in two scattering geometries corresponding to the
different orientations of the external magnetic field H0 with respect
to the direction of the exchanged wave vector k. The MSSW geom-
etry is for k perpendicular to H0 while the MSBVW one corre-
sponds to k parallel to H0.
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FIG. 2. Measured �points� and calculated �dashed curves� fre-
quency dispersion for the continuous �unpatterned� 30-nm-thick
NiFe film. The so-called DE �full points� was measured in the
MSSW configuration while the BA �open circles� was measured in
the MSBVW configuration. The first perpendicular standing spin
wave �full and open circles at about 23 GHz� was detected in both
configurations.
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the approach in Refs. 21 and 22, we neglect inhomogeneity
of the static magnetization inside the elements. Thus

M�r� = �M0ey inside the dots

0 in the gaps between dots.
�

The effective exchange field is defined as follows:

hex�r� = ��2m�r� . �2�

We also neglect the inhomogeneity of distribution of dy-
namic magnetization and of its dipole and exchange field
across the dot thickness, i.e., along the axis x. For elements
with a small aspect ratio L /w
1 this approximation is ap-
propriate as shown in multiple previous studies.6,22,23

As the system is periodical in both directions, we use the
Bloch-Floquet theorem to write down a solution for m���
=m�y ,z� in the form of plane Bloch waves: m���
=m̃���exp�ikB��, where m̃���=m̃��+a� is a periodic func-
tion, a is the lattice vector for the 2D quasicrystal, and kB is
the Bloch vector of the collective mode. We then expand all
periodic quantities into Fourier series and obtain the follow-
ing relations:

m�y,z� = 	
j=−�

�

	
l=−�

�

m j,l exp�ikyjy + ikzlz�

�exp�ikByy + ikBzz� ,

hex�y,z� = − � 	
j=−�

�

	
l=−�

�

Kj,l
2 m j,l exp�ikyjy + ikzlz�

�exp�ikByy + ikBzz� ,

hd�y,z� = 	
j=−�

�

	
l=−�

�

P̂�Kj,l�m j,l exp�ikyjy + ikzlz�

�exp�ikByy + ikBzz� . �3�

In these expressions kyj =2�j /a, kzl=2�l /a, j , l= . . . ,

−1 ,0 ,1 , . . ., and Kj,l
2 = �kyj +kBy�2+ �kzl+kBz�2, P̂�
q
� is the

dynamic dipole-field tensor with components: Pzz�
q
�
=−F�
q
�sin2���q��, Pxx�
q
�=F�
q
�−1, sin���q��=qz / 
q
,
and q is some “dummy” wave vector. The function F�q� is
defined, as follows: F�q�=1-�1-exp�-
qL
�� / 
qL
.24 It repre-
sents the Fourier integral transform

F�q� =
1

2�
�

−�

�

G�s�exp�− iqs�ds �4�

of the thickness-averaged Green’s function of dynamic di-
pole field23

G�s� = �1/L�ln�s2/�s2 + L2�� �5�

�see Ref. 25 for details�.
Substituting Eqs. �3� into Eq. �1� results in a system of

coupled equations as follows:

i�	/��mn,m,�B

= 	
n�,m�=−�

�

�Mn−n�,m−m��− �
kn�,m� + kB
2mn�,m�,�B

+ P̂�
kn�,m� + kB
�mn�,m�,�B
�

+ H0n−n�,m−m� � mn�,m�,�B
� , �6�

where M j,l is the Fourier-series transform of Eq. �2�. The
Fourier-series transform H0j,l of the internal static field and
H0 is related to M j,l by the same dipole-field function �4�

H0j,l = − F�
kj,l
�cos���kj,l��M j,l. �7�

The homogeneous infinite system of algebraic Eq. �6� rep-
resents an eigenvalue and eigenvector problem for a matrix
of coefficients of the system. It allows numerical solution.
The eigenvalues are values of i�	 /�� and the eigenvectors
give amplitudes of Fourier harmonics of the collective
modes. The square of the modulus of the fundamental har-
monics j=0, l=0 �m0,0,�B

� is proportional to the BLS re-
sponse seen at the incidence angle �=a sin�k� / �4���.26 �In
this description k is not limited to the first BZ and can span
over any point of the reciprocal space�. To solve Eq. �6�
numerically one has to truncate the series at some values of j
and l. In accordance to Ref. 27 the approach of the thickness
averaged Green’s function �4� and �5� is valid for 
k
L2
which gives for the truncation order 
j
 , 
l
= �w+�� / ��L�. In
accordance with this formula in our numerical calculations
we took into account harmonics with j and l from −10 to +10
�21 harmonics in total�. Figure 3 shows the profile of static
internal field, defined as the sum of the Zeeman field H0 and
the demagnetizing field, calculated by using both the OOMMF

micromagnetic simulation and the above formula �Eq. �7��.
From the figure one sees that the 21-harmonics approxi-

mation has good accuracy. The coefficients of the system Eq.
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FIG. 3. Section of the static internal magnetic field of the dots
along the field direction. The section is taken at the center of the
dot. Thick solid line: OOMMF simulation for the central dot of a
3�3 array of dots. Thin black dashed line: truncated Fourier-series
solution in Eq. �7�. Note that the approximate calculation using the
formula �7� gives an internal field which is homogeneous across
dots in the direction perpendicular to the applied field.
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�6� form a matrix containing �2�21�21�� �2�21�21� el-
ements. Its 881 eigenvalues for a given value of the Bloch
wave number represent array eigenfrequencies. One half of
the eigenvalues is positive and one half is negative but hav-
ing the same absolute values as the positive ones. To com-
pare with experimental data, we performed the following
steps: �a� selection of the 20 positive eigenvalues which cor-
respond to the largest BLS responses, according to the dis-
cussion above and �b� calculation of the inverse 2D Fourier
transform �the first of Eqs. �3�� of the calculated eigenvec-
tors. This gives the eigenmode spatial profiles which allow
one identifying these modes.

It is interesting to notice that, due to the relatively weak
strength of the dipolar coupling, the collective excitations in
the matrix of square dots, whose profiles can be obtained
with Eq. �6�, can be regarded as formed by the stationary
resonances of individual elements �slightly deformed by the
dipolar interaction� combined with different phases to form a
Bloch wave propagating through the whole pattern. There-
fore, for the nomenclature and the labeling of collective
modes, we use here the same scheme adopted in previous
papers for stationary eigenmodes of non interacting dots, ac-
cording to their spatial symmetry.28 For instance, we label as
fundamental �F� the mode characterized by the absence of
nodes within each dot. Then we distinguish between Damon-
Eshbach-type modes, n-DE, characterized by n nodal sur-
faces nearly parallel to the static magnetization and back-
wardlike modes, m-BA, with m nodal surfaces nearly
perpendicular to the static magnetization. Mixed modes have
nodal planes both parallel and perpendicular to the external
field and are labeled by the two indexes n and m. Finally,
there are end modes localized at the borders of the dots.
Analysis of mode profiles reveals that end modes �EMs� can
be divided in to DE-like and BA-like EMs depending on the
presence of nodal planes in the perpendicular or parallel di-
rection with respect to the external magnetic field. Therefore,
if the EM has no nodes we label it EMF, while in presence of
a number m or n of nodes, we will use the labels EMnDE or
EMmBA.

IV. RESULTS AND DISCUSSION

A. Comparison between experimental spectra and theory

Figure 4 shows two sequences of BLS spectra, recorded
in the MSBVW and MSSW configurations at different values
of the incidence angle of light, i.e., different magnitude of
the transferred wave number k. Spectra measured in both
scattering geometries reveal several peaks in the frequency
range between 5 and 18 GHz. First of all we focus our at-
tention on the frequency range above 10 GHz. In the MSSW
geometry we found sizeable frequency dispersion for a
couple of modes as seen in Fig. 4, right panel. This behavior
is different from the case of noninteracting stripes where, as
a consequence of lateral confinement, quantized spin wave
with nondispersive character have been observed,29 and it is
a clear signature of the formation of propagating collective
modes, as discussed in the following. On the contrary, in the
MSBVW geometry amplitudes of dispersion for all spin-
wave modes are considerably less pronounced �Fig. 4, left

panel�. From a careful comparison between the measured
spectra and the calculated mode frequencies and profiles, we
could assign a label to each of the detected modes, as indi-
cated in Fig. 4. In the first BZ �� and k below about 15° and
0.6�105 rad /cm, respectively� the F mode has the largest
cross section whatever the experimental configuration. As
the value of � is increased, the most intense peak in BLS
spectra moves towards higher order modes, as seen in Fig. 4.
In particular, the more intense BLS peaks originate from DE-
type �BA-type� collective excitations in the MSSW �MS-
BVW� scattering geometry respectively. In fact, the light-
scattering intensity is proportional to the squared Fourier
transform of the dynamic magnetization along the in-plane
direction of the wave vector k, as shown in previous inves-
tigations of magnetic wires11 and dots.30,31 This is also in
agreement with a recent theory for the BLS response of ther-
mal collective modes on arrays of dipole coupled stripes.32

In Fig. 5 the measured and calculated frequencies are re-
ported as a function of the transferred wave-vector magni-
tude, for both the MSSW and the MSBVW configuration.
The bold portion of curves indicates the most intense peak in
the calculation, assuming that its intensity is proportional to
the square of the modulus of the fundamental harmonics
m0,0,�B

�see discussion above�. It can be seen that the calcu-
lation correctly predicts not only the modes frequency, but
also their intensity �compare with experimental BLS inten-
sity spectra in Fig. 4�, allowing us an unambiguous identifi-
cation of experimentally measured BLS responses.

One has to note that to obtain this agreement we had to
decrease the value of the applied field in the calculation to
1.4 kOe �with respect to the experimental value H0
=1.5 kOe�. We believe that the approximation of homoge-
neous distribution of dynamic magnetization across the ele-
ment thickness and, especially, of the approximation of the
homogeneous static magnetization across the element
width22,23 were the reasons which required this small correc-
tion of the applied field value. In spite of this, the method of
calculation is very efficient and the time of calculation of the
whole set of frequencies for a given value of Bloch wave
number is about 1 minute.

FIG. 4. �Color online� Brillouin spectra recorded in the MS-
BVW �left panel� and in the MSSW �right panel� configuration, at
different value of the incidence angle of light, for a fixed applied
magnetic field H0=1.5 kOe.
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By comparing the calculation results with the BLS inten-
sity spectra we see that as the value of k increases from the
centre to the border of the first BZ �i.e. from k=0 to k
=kBZ=� /a� the most intense peak corresponds to the collec-
tive F mode. As the value of k increases, other modes be-
come dominant. At k=2.2� /a, for example, the fundamental
mode disappears from the set of the 20 most intense modes
of the spectrum while the 2DE and the 2BA are the dominant
modes in the MSSW and MSBVW configuration, respec-
tively. For a detailed discussion of the dependence of the
BLS cross section on the profile of collective modes, see
Ref. 3.

Remarkably, in the MSSW configuration the F and the
1DE modes exhibit an oscillating behavior, whose span is
about 1 and 0.5 GHz, respectively. This indicates that these
modes are traveling waves of Bloch type. The dynamic di-
polar interdot coupling is the origin of the capability of these
modes to travel. As Bloch waves, these modes are character-
ized by a periodicity in the reciprocal space in the form of
Brillouin zones whose width is determined by the pattern
geometry. Note, that at the centre of the BZ �k=0� the cal-
culated group velocity of the F mode �vg=d�2��� /dk
=1.97 �m /ns� is smaller that the corresponding value for
the continuous film vg=d�2��� /dk=2.83 �m /ns, which
represents the upper limit for the dispersion slope of collec-
tive modes on the periodically patterned sample.

Different from the case of F and 1DE modes, the other
modes are practically dispersionless, i.e., their frequencies do
not change as a function of the wave vector. Similar to the
case of dipole-coupled stripes,6 this behavior can be under-
stood taking into account the fact that a spin-wave mode
produces a dynamic dipole �stray� field whose strength is
related to the spatial profile of the mode itself. In fact, the
dynamic stray field has significant values only for the F and
the 1DE modes while it dramatically decreases for the modes
presenting several nodes.33 This decrease in the stray field
strength leads to a weaker dipolar coupling and consequently

to the decrease in the width of the mode frequency band. The
frequency minimum for the F mode is measured at the centre
of the first Brillouin zone �k=0�, where magnetization pre-
cession in all dots is in-phase while the maximum is reached
at its edge �k=kBZ=� /a� which corresponds to an antiphase
precession of nearest neighbors dots in the direction of k. An
opposite behavior has been observed for the 1DE mode,
which exhibits the maximum and the minimum of the spin-
wave frequency at the centre and at the edge of the first
Brillouin zone, respectively. The evolution of the spin-wave
frequency within the first BZ in the MSSW configuration,
can be understood considering that for both the F and the
1DE mode, the dynamical coupling is dominated by the in-
plane component �mz� of the dynamical magnetization which
is much larger than the out-of-plane one �mx�. Similarly to
the case of the interacting wires, when the mz component of
a mode has the same direction at the adjacent edges of neigh-
boring dots �at the centre and at the edge of the first BZ for
the F and the 1 DE modes, respectively�, the dipolar energy
decreases, resulting in a decrease in the spin-wave frequency.
When the mz component of a mode has opposite direction at
the adjacent edges of neighboring dots �at the edge and at the
centre of the first BZ for the F and the 1 DE modes, respec-
tively�, the dipolar energy increases, inducing an increase in
the spin-wave frequency.

In contrast with the above discussed behavior of the
modes measured in the MSSW configuration, measurements
in the MSBVW geometry do not show noticeable dispersion
for any modes �Figs. 4 and 5, left side�. There are two main
reasons for this.

First of all, both the frequency bandwidth and the disper-
sion slope for collective modes of the periodically-patterned
samples have upper limits given by the dispersion law for the
unpatterned �continuous� film. In particular, for interdot dis-
tance �→� the collective modes are dispersionless while
for �=0 one recovers the dispersion of the continuous
film.7,27 Now, the dispersion of BA modes in unpatterned
metallic films is much smaller than the DE dispersion, as it
can be inferred from the measured frequency dispersion for
the reference continuous film of the same thickness and
made in the same production cycle as the squared dot array
�see Fig. 2�. In this case the calculated group velocity for the
F mode of the dots array and the backwardlike wave of the
continuous film near to k=0 are almost equal �vg
=d�2��� /dk=−0.41 �m /ns� and, as expected, are smaller
than the measured value for the Voigt configuration �see also
Fig. 5�.

Second, because of the presence of edge domains where
the internal field is strongly inhomogeneous, the separation
of the areas of localization of the fundamental mode in
neighboring dots is larger in the direction of the applied field
than in the perpendicular direction. �i.e., the “effective” � is
larger and the effective w is smaller�. This results in a
smaller dynamic dipole coupling of BA modes, detected in
the MSBVW configuration.

Turn now to the low-frequency peaks �below about 10
GHz� in BLS spectra. Our calculations show that they corre-
spond to modes localized at the edges of the dots, i.e., EMs
confined in regions where the internal field is highly
inhomogeneous.21 As seen from Fig. 5, some of these peaks
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FIG. 5. �Color online� Collective mode dispersion for an applied
field H0=1.5 kOe measured in the MSSW �full circles� and MS-
BVW �open circles� configuration. Dots: experiment. Lines: simu-
lation. Bold lines indicate the most intense response. The dashed
lines are the dispersion of the DE mode and BA mode of the con-
tinuous film �from Fig. 2�.
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could be traced over a large interval of angles of laser light
incidence in both MSSW and MSBVW configurations. In
both cases no noticeable dispersion is seen. Unfortunately, it
is generally difficult to accurately predict frequencies for
edge modes in a simple model making use of approximation
in Eq. �2�, i.e., assuming a homogeneous magnetization
within the dot. The reason is that their frequencies depend on
the magnetic domains structure close to the elements edges
�S and C states or flower state� which is strongly affected by
material and edge defects and by the sample magnetization
history. Moreover, for coupled resonances, the strength of
dynamical coupling depends on the exact distance between
the areas of their localization. For the above reasons, the
theoretical calculation based on assumption of the uniform
static magnetization, cannot yield realistic prediction con-
cerning EM frequencies and spatial profiles of modes located
below about 10 GHz �shadowed area in Fig. 5�. One has to
include the realistic profile for the static magnetization into
the mode calculation. For instance, the static magnetization
profile may be obtained from an OOMMF simulation, as it was
done in Ref. 34, while calculating mode profiles for guided
spin waves modes of magnetic stripes. However, there is a
more straightforward approach which we will use in the next
section.

B. Micromagnetic simulations

In order to verify the results delivered by the simple
model discussed above and overcome its limitations in the
analysis of edge modes we performed micromagnetic
OOMMF simulations for a 3�3 matrix of dots, according to
the procedure described in Sec. II. In particular, we calcu-
lated the power spectrum of spin excitations after the appli-
cation of a perpendicular field pulse to the central dot of the
matrix. In Fig. 6 we show a comparison between the power
spectra for the isolated squared dot and for the central ele-

ment of a 3�3 matrix of dots. From this figure it is evident
that some peaks, corresponding to the principal modes, un-
dergo a splitting. For the F, 1DE, and 2DE modes this is
indicated by the arrows in the figure.

The spatial profiles corresponding to each peak of the
doublets relative to the F and 1DE modes of the 3�3 array
are shown in Fig. 7. Note that the in-phase and the out-of-
phase collective modes correspond to the centre and to the
edge of the first BZ of the continuous array, respectively.
From a simple inspection of such profiles it is evident that
starting from the central dot, where the field pulse is applied,
the strength of the coupling is much more intense in the
direction perpendicular to the static field compared to the
parallel one. This is in agreement with the above discussed
finding that the DE-like modes are more affected by the cou-
pling and exhibit a stronger dispersive character than the
BA-like ones.

Furthermore, the peak at low �high� frequency in the dou-
blets resulting from either the F or the 2DE mode, indicated
by the arrows in Fig. 6, corresponds to an in-phase �out-of-
phase� spin precession in adjacent dots along the direction
perpendicular to the field. The opposite happens for the dou-
blet relative to the 1DE mode, confirming the different slopes
of their dispersion curves in Fig. 5. The reason for this dif-
ference in the behavior can be understood looking at the sign
of the dynamical magnetization at the borders of adjacent
dots along the vertical direction in Fig. 7. For the F mode the
same sign is achieved for the in-phase precession while for
the 1DE mode the oscillation at the borders of adjacent dots
have the same sign for out-of-phase precession. The fre-
quency difference between the in-phase and out-of-phase
precessions of the F �1DE� mode is 0.8 GHz �0.4 GHz�
which is in very good agreement with the result of the Fou-
rier space approach described in Sec. III and satisfactorily
reproduces the measured width of the frequency band for the
above mentioned modes.

In the final part of our paper, let us discuss the properties
of EMs analyzing the results of micromagnetic simulations.35
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FIG. 6. �Color online� Power spectrum of magnetic excitations
in an isolated single dot �lower spectrum� and in the central element
of a 3�3 matrix of interacting dots calculated using the OOMMF

micromagnetic code. The external field value is H0=1.5 kOe. The
arrows indicate the splitting of each of the labeled peaks of the
isolated dot in a doublet of peaks with in-phase �in� or out-of-phase
�out� oscillation in adjacent dots. The lower insets show the calcu-
lated spatial profiles of the dynamical magnetization for some of the
principal modes of the isolated dot.
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FIG. 7. �Color online� Calculated spatial profile of the dynami-
cal magnetization of collective F and 1DE modes for a 3�3 matrix
of interactive dots after perturbation of the central dot with a per-
pendicular field pulse. It is seen that the main interaction is between
the central dot and those adjacent to it in the vertical direction, i.e.,
in the direction perpendicular to the applied field.
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As in the case of the high-frequency modes, there is a split-
ting of the EMs peaks in the calculated power spectra �for
example, modes EM1DE and EM2DE indicated in Fig. 6�, con-
firming the influence of the dipolar coupling. However, we
note that for EMs the effect is opposite to what was previ-
ously observed for the F or the DE modes: the higher fre-
quency mode is now characterized by in-phase magnetiza-
tion precession at the neighboring edges of adjacent dots
while the lower frequency one by antiphase precession �see
Fig. 8, where the EM2DE mode is shown as an example�. This
difference can be explained taking into account the intensity
of the dipolar field produced by the dynamic magnetization.
For the EMs the stray field of the mz component is small. It
exists only because of dot confinement along z and would
vanish if the dots merged into continuous stripes along z. On
the contrary, the dipole field induced by mx is large �its lim-
iting value −4�mx is obtained for the vanishing gap in the x
direction�. It is contra-aligned to the dynamic magnetization
vector which induces this field. Thus for the antiphase pre-
cession at the adjacent edges of a two dots the stray field
from the neighbor is coaligned with the direction of the own
mx of the dot. In this way the dipole energy is minimized and
the frequency is smaller than for the edge modes for un-
coupled dots. On the contrary, for the in-phase precession the
contribution to the total dipole field from the closest neigh-
bor is antialigned to mx in each dot so the total dipole energy
is maximized and the mode frequency is larger than for the
antiphase precession. This splitting between an in-phase and
an out-of-phase precession of EMs in adjacent dots re-
sembles the appearance of “acoustic” and “optical” modes in
a magnetic bilayer separated by a nonmagnetic interlayer.

It is important to remark, however, that the nature of the
dipole interactions underlying the frequency splitting evi-
denced by the arrows in Fig. 6 differs for DE or BA modes
and EM. For the DE and BA modes the dipolar coupling
induces the formation of true collective modes which propa-
gates through the lattice and the splitted peaks obtained in
the OOMMF simulation �Fig. 6� indicate the approximate po-
sitions for the upper and lower limits for their frequency
bands. For EMs, instead, the magnetization oscillations lo-
calized at the edges of two adjacent dots couple but the os-
cillations localized at the opposite edges of the same dot are
not phase correlated. This results in no dispersion for the EM

modes in the MSBVW configuration; the modes of the dou-
blets have a localized nature and are characterized by dis-
crete frequencies. Unfortunately, this splitting of the EDs has
not been experimentally observed. This is probably due to
that fact this splitting is relatively small and strongly affected
by the details of edge domains. Therefore in the real sample
the frequency difference between the modes of a doublet can
be strongly reduced by the presence of the edge defects.

As for the MSSW configuration, strictly speaking, the
EMs form collective excitations. However, their dispersion is
almost negligible, reflecting the weak dynamical interdot
coupling and the rather localized character of these modes.
This is evident from inspection of Fig. 8, where it is seen that
the dots which are over and above the central one are prac-
tically unaffected by the excitation of the EM in the central
dot.

V. CONCLUSIONS

In this paper we have exploited BLS to study the ther-
mally excited spin wave modes in a 2D magnonic crystal
consisting of interacting nanodots. This technique allowed us
to study dynamic magnetic dipole coupling of the elements
separately from the static magnetic coupling which is always
present in closely packed 2D arrays of magnetic nanostruc-
tures. Measurements recorded as a function of the magnitude
and the direction of the exchanged wave vector enabled us to
give experimental evidence of traveling collective modes,
whose frequency dispersion is characterized by a full mag-
nonic gap. The frequency dispersion for the modes has been
calculated by numerically solving eigenvalue/eigenfunction
problem for a band matrix which originates from the linear-
ized Landau-Lifschitz magnetic torque equation. This per-
mitted us to quantitatively explain the observed frequency
dispersion of the modes in terms of dynamical dipolar cou-
pling and to discuss its influence on different classes of
eigenmodes. In addition, the spatial profiles of the modes
have been mapped out by micromagnetic simulations on a
limited array �3�3� of dots, confirming the main findings
achieved by the analytical model.

Our main finding is a considerable anisotropy of dynami-
cal coupling for propagating collective modes. The modes
propagating perpendicular to the applied magnetic field may
acquire considerable group velocities but the modes with
Bloch wave vectors along the field are characterized by neg-
ligible velocities. An important contribution to this aniso-
tropy is the static demagnetizing field which effectively in-
creases the interdot separation in the direction of the applied
field.
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